(0) Obligation:

Clauses:

flat([], []).
flat(.([], T), R) :- flat(T, R).
flat(.(.(H, T), TT), .(H, R)) :- flat(.(T, TT), R).

Query: flat(g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

flatA([], []).
flatA(.([], []), []).
flatA(.([], .([], T16)), T18) :- flatA(T16, T18).
flatA(.([], .(.(T35, T36), T37)), .(T35, T39)) :- flatA(.(T36, T37), T39).
flatA(.(.(T44, []), T57), .(T44, T59)) :- flatA(T57, T59).
flatA(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) :- flatA(.(T69, T70), T72).

Query: flatA(g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
flatA_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

flatA_in_ga([], []) → flatA_out_ga([], [])
flatA_in_ga(.([], []), []) → flatA_out_ga(.([], []), [])
flatA_in_ga(.([], .([], T16)), T18) → U1_ga(T16, T18, flatA_in_ga(T16, T18))
flatA_in_ga(.([], .(.(T35, T36), T37)), .(T35, T39)) → U2_ga(T35, T36, T37, T39, flatA_in_ga(.(T36, T37), T39))
flatA_in_ga(.(.(T44, []), T57), .(T44, T59)) → U3_ga(T44, T57, T59, flatA_in_ga(T57, T59))
flatA_in_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → U4_ga(T44, T68, T69, T70, T72, flatA_in_ga(.(T69, T70), T72))
U4_ga(T44, T68, T69, T70, T72, flatA_out_ga(.(T69, T70), T72)) → flatA_out_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72)))
U3_ga(T44, T57, T59, flatA_out_ga(T57, T59)) → flatA_out_ga(.(.(T44, []), T57), .(T44, T59))
U2_ga(T35, T36, T37, T39, flatA_out_ga(.(T36, T37), T39)) → flatA_out_ga(.([], .(.(T35, T36), T37)), .(T35, T39))
U1_ga(T16, T18, flatA_out_ga(T16, T18)) → flatA_out_ga(.([], .([], T16)), T18)

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
[]  =  []
flatA_out_ga(x1, x2)  =  flatA_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x1, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5, x6)  =  U4_ga(x1, x2, x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

flatA_in_ga([], []) → flatA_out_ga([], [])
flatA_in_ga(.([], []), []) → flatA_out_ga(.([], []), [])
flatA_in_ga(.([], .([], T16)), T18) → U1_ga(T16, T18, flatA_in_ga(T16, T18))
flatA_in_ga(.([], .(.(T35, T36), T37)), .(T35, T39)) → U2_ga(T35, T36, T37, T39, flatA_in_ga(.(T36, T37), T39))
flatA_in_ga(.(.(T44, []), T57), .(T44, T59)) → U3_ga(T44, T57, T59, flatA_in_ga(T57, T59))
flatA_in_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → U4_ga(T44, T68, T69, T70, T72, flatA_in_ga(.(T69, T70), T72))
U4_ga(T44, T68, T69, T70, T72, flatA_out_ga(.(T69, T70), T72)) → flatA_out_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72)))
U3_ga(T44, T57, T59, flatA_out_ga(T57, T59)) → flatA_out_ga(.(.(T44, []), T57), .(T44, T59))
U2_ga(T35, T36, T37, T39, flatA_out_ga(.(T36, T37), T39)) → flatA_out_ga(.([], .(.(T35, T36), T37)), .(T35, T39))
U1_ga(T16, T18, flatA_out_ga(T16, T18)) → flatA_out_ga(.([], .([], T16)), T18)

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
[]  =  []
flatA_out_ga(x1, x2)  =  flatA_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x1, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5, x6)  =  U4_ga(x1, x2, x6)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(.([], .([], T16)), T18) → U1_GA(T16, T18, flatA_in_ga(T16, T18))
FLATA_IN_GA(.([], .([], T16)), T18) → FLATA_IN_GA(T16, T18)
FLATA_IN_GA(.([], .(.(T35, T36), T37)), .(T35, T39)) → U2_GA(T35, T36, T37, T39, flatA_in_ga(.(T36, T37), T39))
FLATA_IN_GA(.([], .(.(T35, T36), T37)), .(T35, T39)) → FLATA_IN_GA(.(T36, T37), T39)
FLATA_IN_GA(.(.(T44, []), T57), .(T44, T59)) → U3_GA(T44, T57, T59, flatA_in_ga(T57, T59))
FLATA_IN_GA(.(.(T44, []), T57), .(T44, T59)) → FLATA_IN_GA(T57, T59)
FLATA_IN_GA(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → U4_GA(T44, T68, T69, T70, T72, flatA_in_ga(.(T69, T70), T72))
FLATA_IN_GA(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → FLATA_IN_GA(.(T69, T70), T72)

The TRS R consists of the following rules:

flatA_in_ga([], []) → flatA_out_ga([], [])
flatA_in_ga(.([], []), []) → flatA_out_ga(.([], []), [])
flatA_in_ga(.([], .([], T16)), T18) → U1_ga(T16, T18, flatA_in_ga(T16, T18))
flatA_in_ga(.([], .(.(T35, T36), T37)), .(T35, T39)) → U2_ga(T35, T36, T37, T39, flatA_in_ga(.(T36, T37), T39))
flatA_in_ga(.(.(T44, []), T57), .(T44, T59)) → U3_ga(T44, T57, T59, flatA_in_ga(T57, T59))
flatA_in_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → U4_ga(T44, T68, T69, T70, T72, flatA_in_ga(.(T69, T70), T72))
U4_ga(T44, T68, T69, T70, T72, flatA_out_ga(.(T69, T70), T72)) → flatA_out_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72)))
U3_ga(T44, T57, T59, flatA_out_ga(T57, T59)) → flatA_out_ga(.(.(T44, []), T57), .(T44, T59))
U2_ga(T35, T36, T37, T39, flatA_out_ga(.(T36, T37), T39)) → flatA_out_ga(.([], .(.(T35, T36), T37)), .(T35, T39))
U1_ga(T16, T18, flatA_out_ga(T16, T18)) → flatA_out_ga(.([], .([], T16)), T18)

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
[]  =  []
flatA_out_ga(x1, x2)  =  flatA_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x1, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5, x6)  =  U4_ga(x1, x2, x6)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U2_GA(x1, x2, x3, x4, x5)  =  U2_GA(x1, x5)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)
U4_GA(x1, x2, x3, x4, x5, x6)  =  U4_GA(x1, x2, x6)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(.([], .([], T16)), T18) → U1_GA(T16, T18, flatA_in_ga(T16, T18))
FLATA_IN_GA(.([], .([], T16)), T18) → FLATA_IN_GA(T16, T18)
FLATA_IN_GA(.([], .(.(T35, T36), T37)), .(T35, T39)) → U2_GA(T35, T36, T37, T39, flatA_in_ga(.(T36, T37), T39))
FLATA_IN_GA(.([], .(.(T35, T36), T37)), .(T35, T39)) → FLATA_IN_GA(.(T36, T37), T39)
FLATA_IN_GA(.(.(T44, []), T57), .(T44, T59)) → U3_GA(T44, T57, T59, flatA_in_ga(T57, T59))
FLATA_IN_GA(.(.(T44, []), T57), .(T44, T59)) → FLATA_IN_GA(T57, T59)
FLATA_IN_GA(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → U4_GA(T44, T68, T69, T70, T72, flatA_in_ga(.(T69, T70), T72))
FLATA_IN_GA(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → FLATA_IN_GA(.(T69, T70), T72)

The TRS R consists of the following rules:

flatA_in_ga([], []) → flatA_out_ga([], [])
flatA_in_ga(.([], []), []) → flatA_out_ga(.([], []), [])
flatA_in_ga(.([], .([], T16)), T18) → U1_ga(T16, T18, flatA_in_ga(T16, T18))
flatA_in_ga(.([], .(.(T35, T36), T37)), .(T35, T39)) → U2_ga(T35, T36, T37, T39, flatA_in_ga(.(T36, T37), T39))
flatA_in_ga(.(.(T44, []), T57), .(T44, T59)) → U3_ga(T44, T57, T59, flatA_in_ga(T57, T59))
flatA_in_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → U4_ga(T44, T68, T69, T70, T72, flatA_in_ga(.(T69, T70), T72))
U4_ga(T44, T68, T69, T70, T72, flatA_out_ga(.(T69, T70), T72)) → flatA_out_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72)))
U3_ga(T44, T57, T59, flatA_out_ga(T57, T59)) → flatA_out_ga(.(.(T44, []), T57), .(T44, T59))
U2_ga(T35, T36, T37, T39, flatA_out_ga(.(T36, T37), T39)) → flatA_out_ga(.([], .(.(T35, T36), T37)), .(T35, T39))
U1_ga(T16, T18, flatA_out_ga(T16, T18)) → flatA_out_ga(.([], .([], T16)), T18)

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
[]  =  []
flatA_out_ga(x1, x2)  =  flatA_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x1, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5, x6)  =  U4_ga(x1, x2, x6)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U2_GA(x1, x2, x3, x4, x5)  =  U2_GA(x1, x5)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)
U4_GA(x1, x2, x3, x4, x5, x6)  =  U4_GA(x1, x2, x6)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(.([], .(.(T35, T36), T37)), .(T35, T39)) → FLATA_IN_GA(.(T36, T37), T39)
FLATA_IN_GA(.([], .([], T16)), T18) → FLATA_IN_GA(T16, T18)
FLATA_IN_GA(.(.(T44, []), T57), .(T44, T59)) → FLATA_IN_GA(T57, T59)
FLATA_IN_GA(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → FLATA_IN_GA(.(T69, T70), T72)

The TRS R consists of the following rules:

flatA_in_ga([], []) → flatA_out_ga([], [])
flatA_in_ga(.([], []), []) → flatA_out_ga(.([], []), [])
flatA_in_ga(.([], .([], T16)), T18) → U1_ga(T16, T18, flatA_in_ga(T16, T18))
flatA_in_ga(.([], .(.(T35, T36), T37)), .(T35, T39)) → U2_ga(T35, T36, T37, T39, flatA_in_ga(.(T36, T37), T39))
flatA_in_ga(.(.(T44, []), T57), .(T44, T59)) → U3_ga(T44, T57, T59, flatA_in_ga(T57, T59))
flatA_in_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → U4_ga(T44, T68, T69, T70, T72, flatA_in_ga(.(T69, T70), T72))
U4_ga(T44, T68, T69, T70, T72, flatA_out_ga(.(T69, T70), T72)) → flatA_out_ga(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72)))
U3_ga(T44, T57, T59, flatA_out_ga(T57, T59)) → flatA_out_ga(.(.(T44, []), T57), .(T44, T59))
U2_ga(T35, T36, T37, T39, flatA_out_ga(.(T36, T37), T39)) → flatA_out_ga(.([], .(.(T35, T36), T37)), .(T35, T39))
U1_ga(T16, T18, flatA_out_ga(T16, T18)) → flatA_out_ga(.([], .([], T16)), T18)

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
[]  =  []
flatA_out_ga(x1, x2)  =  flatA_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x1, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4, x5, x6)  =  U4_ga(x1, x2, x6)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(.([], .(.(T35, T36), T37)), .(T35, T39)) → FLATA_IN_GA(.(T36, T37), T39)
FLATA_IN_GA(.([], .([], T16)), T18) → FLATA_IN_GA(T16, T18)
FLATA_IN_GA(.(.(T44, []), T57), .(T44, T59)) → FLATA_IN_GA(T57, T59)
FLATA_IN_GA(.(.(T44, .(T68, T69)), T70), .(T44, .(T68, T72))) → FLATA_IN_GA(.(T69, T70), T72)

R is empty.
The argument filtering Pi contains the following mapping:
[]  =  []
.(x1, x2)  =  .(x1, x2)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(.([], .(.(T35, T36), T37))) → FLATA_IN_GA(.(T36, T37))
FLATA_IN_GA(.([], .([], T16))) → FLATA_IN_GA(T16)
FLATA_IN_GA(.(.(T44, []), T57)) → FLATA_IN_GA(T57)
FLATA_IN_GA(.(.(T44, .(T68, T69)), T70)) → FLATA_IN_GA(.(T69, T70))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

FLATA_IN_GA(.([], .(.(T35, T36), T37))) → FLATA_IN_GA(.(T36, T37))
FLATA_IN_GA(.([], .([], T16))) → FLATA_IN_GA(T16)
FLATA_IN_GA(.(.(T44, []), T57)) → FLATA_IN_GA(T57)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 2·x1 + 2·x2   
POL(FLATA_IN_GA(x1)) = 2·x1   
POL([]) = 0   

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(.(.(T44, .(T68, T69)), T70)) → FLATA_IN_GA(.(T69, T70))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(15) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

FLATA_IN_GA(.(.(T44, .(T68, T69)), T70)) → FLATA_IN_GA(.(T69, T70))


Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(FLATA_IN_GA(x1)) = 2·x1   

(16) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) YES